Notes on Human Interaction and Autonomy

There are many arguments for autonomy in humans that fall short of producing confidence in it. The common perception is that of autonomous agency; however reduction and testing tends to suggest otherwise. Though human interaction and behavior is chaotic and thus difficult to predict in discrete instances, more general predispositions are trivial to demonstrate. The notions of determinism and causation both appear to be incoherent upon further examination as well. A more wholistic approach is probably more likely to be successful.

The common perception is that of the individual being in the drivers seat of a biological organism. The cognitive constraints that we all share however, tend to produce truncated perceptions. These perceptions are produced by the limited amount of interactions that we are attending to. We often take credit for learned behaviors, evolutionary predispositions, social heuristics, family traditions, impulses etc..

Human interaction, more carefully considered, appears to be feedback loops with various environmental stimuli. It’s also subject to normative pressures. Though there are degrees of freedom, consequences are a constant concern. Almost all human behavior is a result of impulse. Though it’s over 90%, it’s difficult to say how much because even cognitive responses become habituated and thus impulsive. Habituating a generally successful cognitive response is only rational. What one has learned from experience is too often thought of as an autonomous response; however it appears to be merely a deprecation of less successful thoughts and behaviors; and the before mentioned habituation of more successful ones. The act of thinking before responding is merely an economy of this process.

The success of game theoretical understanding has uncovered some interesting arguments against determinism. The presence of cheating and signal noise are chaotic components to the system. Though reducible after the fact, discrete prediction isn’t likely. Since the ability to reduce the instances exists, cheating and signal noise are not likely candidates for autonomy either. This is because the cheating and / or signal noise are themselves products of environmental stimuli as well.

We tend to truncate the evidence in reduction as well. We try to see causal factors in the interactions; though the evidence suggests that all interactions are feedback loops. Our cognitive constraints are the likely reason behind this; though they too are economic products of the environment. In order to be capable of reducing systems and interactions, we truncate them into hierarchies. These hierarchies are products of human cognition and not so much an accurate depiction of nature. The Bohmian view holds up to scrutiny much better. General Systems Theory holds up to scrutiny well too as it doesn’t focus on hierarchies. Rather it focuses on prevalent systemic behaviors. These behaviors scale in our hierarchical accounts.

Personal note:

I’m having more success with General Systems Theory and Bohm’s Implicate Order than I could have anticipated. Though hierarchies are a part of my understanding of natural systems, the reality that nature is not in essence composed of hierarchies specifically creates an interface between the two. I now think of systems as a fractal froth of discrete components; with overlapping spheres of influence. None are causal or responsive; but interactive and cooperative, or at risk for extinction. Biological systems are proving to be subject to this as well… even humans. This is the understanding that I’m gaining from the sciences. It’s also allowing me to consider systems across a wide variety of disciplines; as the axioms provided by General Systems Theory are producing results that are expected by the various disciplines. Whoda’ thunk it? General Systems Theory appears to be a general systems theory.


Maximizing Prediction Value in Complex Social Systems Analysis


The founding principle of Statistical Mechanics is the notion that an understanding of the evolution of a system produces predictive value. This would suggest confidence in the existence of normative function and a preference toward it. It would appear that normative function is a fundamental requirement for prediction; as discrete prediction in an entirely chaotic system would be improbable. In masses of interactions beyond that which humans can parse, probabilistic logic becomes a useful tool for producing predictive value. Statistical Analysis of Classical Systems has become commonplace for this reason. Data analysis is proving it’s worth in recent times.

Probability in Classical Systems:

The cognitive constraints of humans has been a focus of tool production as of late. Concerns over the issues that we face with finance, food production, energy production and environmental influence have become much more prevalent as the population increases. Data analysis has become a staple of not only scientific endeavors, but also for more general research.

The human brain can only reconcile about a dozen pieces of information. This falls far short of the number of significant interactions in complex systems. The most recent solution to this issue has been computer mediation. The combination of relevant information and narrow artificial intelligence has been very useful in sorting our thoughts on many issues. What it has also produced is axioms for consideration of complex systems. The value of the data that is analyzed after the fact, is the prediction value that it produces, as it demonstrates normative function. It’s the statistical analysis of the data that is producing the information that we are interested in. It’s our ability to make predictions about finance, food production, energy production and environmental influence that is the desired human payoff.

The ability to produce prediction value is in the ability to distinguish that which is interesting from that which is normative. This as an axiom, can produce a methodology for assigning probability to possible outcomes. This however requires discrete information concerning the morphology of normative function. This is where probability becomes a useful tool in analyzing systems with large numbers of variables; as the axioms can guide statistics toward significant findings.

Entropy, Normalization and Novelty:

Having some understanding of the morphology of complex systems is essential in producing axioms for statistical analysis. With a framework for classification and logic, the data can produce interesting and useful information. Much of this is already being accomplished with narrow artificial intelligence; however the data is being rendered into information that is useful and understandable to humans. It is important that the end product be humanly intelligible for obvious reasons. Producing an interface between large amounts of data and human cognitive ability seems an effective rout to a functional tool.

Existing theory is more than adequate; as the evidence demonstrates that social systems form with similar axioms. Motivation toward self-interest and self-preservation produce correlation between normative function and behavior. This is because the natural alternative to normalization is extinction. Entropy, being nature’s creative process, doesn’t produce normative function. That is the function of Normalization. Entropy may produce novel properties or systems that are non-destructive to normative function; however it’s normalization that sets the standard. It’s the combination of Entropy and Normalization that then produces Novelty. Entropy, Normalization and Novelty are the fundamentals of morphology and development in all systems.

Chaos and Emergence:

All natural systems are subject to Chaos and Emergence. This is probably because of the prevalence of Entropy. Chaos is of course produced with large numbers of interactions that are difficult to parse. Chaotic systems often do not produce discernible patterns in repetition. This is a large hurdle for prediction; as the changes in the patterning are also difficult to predict. This however can still be observed and expected. This is important when modeling, economizing and assigning probabilities. Emergence is of course the properties, components and systems that emerge to human surprise. Like chaos, it probably occurs due to large masses of interactions. It might also be a product of natural properties that we are not yet aware of. This too can be expected statistically; and can aid in assigning probabilities.


For the purpose of clarity, it’s important to define and give context to what is meant by prediction. In this article, it is a symbol of statistical significance. Complex Social Systems are the epitome of chaotic systems. The collection of data and the analysis of it can only result in the assignment of a probability. It’s not generally the intention to produce accurate predictions of the emergence of discrete facts at a specified time. For economic purposes, the intent would be to create models that have the highest probability of success as practical. By aligning the model with statistically predictive axioms, this can be achieved overall.

Considering the evidence concerning the Second Law of Thermodynamics, one would expect that Entropy be the most prevalent aspect of morphology. The second most prevalent aspect would then be extinction; as Normalization and Novelty would be far less frequent occurrences. One could then mathematically, logically and systemically deduce that the difference between Extinction and Entropy is the sum of Normalization and Novelty. One could also deduce that the third most prevalent aspect is Normalization; as Novelty over time becomes normal. That which is normal contains the properties that produce Normalization. Novelty that coordinates with a critical mass of normal properties has a high probability of becoming normal and amending Normalization. The understanding of the morphology of the system, in discrete processes, guided by the axioms allows the assigning of probabilities to the success of the discrete processes.

Considering the evidence concerning General Systems Theory, discrete systems are influenced by overarching systems; as systems that are higher in the hierarchy produce initial conditions. The initial conditions are often normative and influence discrete systems via Normalization. Where Novelty is present, one might consider it’s economic advantages and weaknesses. One might also consider the influence it might have on that which is normal. This may maximize long term predictive value.

Considering the evidence concerning the behavioral sciences, types of behaviors in individuals, and large and small groups are somewhat predictable. Being chaotic systems means not only that patterns can be difficult to demonstrate, but also that initial conditions are the focus of influence. Where the behaviors are not congruent with the initial conditions, one might consider that some form of Entropy is at play. This might come in many forms. This would also help to determine the predictive value of the success of the behavior. By the rigor of consideration with multiple axioms, the most predictive information as practical is gathered. With the application of each axiom the information is refined producing more accurate probabilities.


The difficulty in producing predictive value in Complex Social Systems Analysis can be overwhelming to the human psyche. It however isn’t just the complexity of social systems that produces the response. The observer effect appears to play a large roll in the responses. The fact that Behavioral Science is still socially in it’s infancy; and hasn’t yet had time to penetrate common knowledge may be one factor. The frustration that comes with argumentation between individuals may be another. There is also the constant natural perception of our hunter, gatherer ancestry influencing our thoughts. We are intrinsically poorly suited to Social Science; as we are evolved and conditioned to the life of a hunter gatherer. This however is not where we are. The difficulties that we face are the product of Entropy; and the solution, by natural processes, will likely either be the normative coordination with initial conditions that leads to transcendence, or abrupt extinction.

Considering the probable outcomes that are likely to be either our future or our end may insight one to be adamant toward public awareness. This however isn’t part of the model. Public awareness is much more likely to produce Entropy than Normalization. The issue is with the state of human understanding in general. The issues in the paragraph above are the root. Human behavior is not necessarily a result of initial conditions. It’s more of a perception of initial conditions. A path toward normative function would likely be more effective for risk management. This means that a perception of initial conditions that produces normative behaviors would be the desired condition. This isn’t likely to result as the current perception of initial conditions for human society in general is still entropic: and thus the vast majority cannot distinguish between normative and entropic behaviors. This doesn’t necessarily mean that humans cannot survive this phase. There are environmental factors that would likely produce normative, impulsive responses via self-preservation. This seems the most likely source of Normalization; as artificial perceptions are so prevalent. This also appears to be the most effective axiom for the purpose of economics; as it is dictated by the initial conditions.

Personal note;

It is likely that normative behaviors will result from the current state of the biosphere. What is in question is whether or not humanity or the whole of biological life as we know it will be a part of it. This article is in a sense optimistic; in that the impulsive responses that are likely to bring normative behaviors will be accompanied with the dangerous results of entropic behavior. There is no precedent for social movements creating significantly normative behaviors in recorded history. This is because polarization is a part of our social paradigm; and has been since the dawn of civilization. The notion that society would all of a sudden wake up and start behaving in a normative fashion is just pure fantasy. Until the initial conditions are so dire that they have much greater influence than the polarizing entropy and the ineffective rituals that are associated with it, no significant normative behavior should be expected. It is probable that we will put ourselves and the rest of the biosphere at great risk before change will occur. Many are concerned that it will be too late; however the arguments for it are weak. This is not the first time that humans or even the rest of the biosphere has been in a similar or even worse situation. Many scientists have stated that this phase of development (from type 0 to type 1) may be the most dangerous; however all phases appear to be wrought with extinction and existential risk for a wide variety of reasons. This type of danger appears to be as natural and as prevalent as at any other point in time. There appears to be nothing historically special about the dangers that lay before us. I think that this notion is probably rooted in a misunderstanding of how we interact with our environment. We seem to have a bloated account of our influence on others, society, the biosphere and beyond.

Notes on Exploitation

In my lifetime Behavioral Science has come of age. This is an exciting time to be alive; because this new understanding of ourselves allows us greater discipline and more tools for the pursuit of happiness. It might also aid in our quest to become better ancestors and stewards. For many it is answering the big questions about the importance of ethics and morality. This is of course what it is doing for me. These are the questions that I have been asking and the answers that Behavioral Science is leading me toward.

Q: How is exploitation possible if free will doesn’t exist?

A: It’s not free will that is being manipulated. It’s functional stimuli being replaced with strategic artifices. Human behavior is a product of initial conditions; conditions which can be obscured, confused and misinterpreted. Behaviors under certain conditions are somewhat predictable. Creating perceptions of specific types of conditions often results in behaviors that are appropriate to the perceived conditions. It’s not so much that one is being manipulated. It’s more that one is responding to a perceived condition that is not likely to be the actual condition. This is the danger that dissimilation (lying) presents. In order for humans to behave maximally appropriately, we require maximally accurate approximations of the conditions. In order to produce a specific type of behavior, one only needs to create a perception of the conditions that the specified behavior is appropriate for. This includes forced behaviors; as self-preservation is a behavior. Also self-preservation is a part of financial coercion; as necessities are “financed”.

Q: How is one to describe exploitation in a manner that is scientifically coherent?

A: Exploitation in a systemic context isn’t necessarily unfavorable. The issues arise when unfavorable outcomes are the wage. When unused resources are being exploited in a manner that is generally cooperative with respect to the overarching system, this would probably be seen as normative. Where conditions are misinterpreted to produce inappropriate responses for a specific cog in the system, without consideration for general systemic function, this would probably be considered entropic. Entropy however isn’t necessarily unfavorable. We find this unfavorable because normative function is in the interest of normative emergences such as biological systems. Entropy can be a wonderfully novel occurrence; if the outcome is non-destructive to normative function. Entropy, Normalization and Novelty are a scientific trinity that is a necessity for the fruitful existence of biological systems.

Where biological entities are allowed to produce novelty via distributed intelligence, all three aspects of the trinity can be maximized. This makes the system competitive and useful; or in Darwinian terms fit. The exploitation that exists in human societies is probably holding humanity back in a systemic sense. This could and has resulted in abrupt extinction and existential risk. Social paradigms as an economy might help to produce more of what we refer to as liberty as well as providing the security that humans unwittingly strive for. This may mean that favorable and unfavorable forms of exploitation can be accounted for and distinguished scientifically. The probability of this is increased by the ability to scientifically analyze and describe initial conditions.

Q: Why do humans exploit each other?

A: There really is no scientific answer as to why. There is however a description of the conditions that lead to this happening. Humans have a general need for security; that results from the natural predisposition toward self-preservation. Where there are not accommodations to this disposition, unfavorable behaviors can result. Natural systems appear to be tiered or hierarchical systems that support each other through cooperation. This is in essence what normative function is, with respect to our current understanding. This has produced dispositions toward certain types of behaviors that are associated with specific types of conditions. Where the conditions are obscured by some form of pathology, inappropriate behaviors can result. This can happen in the many tiers of human interaction. It can happen in a one on one capacity. It can happen in a family or circle of friends. It can happen in a community or even in governmental structures.

This doesn’t necessarily mean that ill intention is the basis for exploitation. It could just as likely be a false perception of defense against ill intention. It’s often a false perception of the conditions that results in unfavorable behaviors. This can happen in the many tiers of human interaction as well. The hierarchy appears to function as a unit; and thus each tier is effected by the rest.

Most might argue that the basic need for various forms of security not being met or the perception of such is a general cause. There is also the possibility of physical or developmental damage or deformity. The latter of course isn’t likely in the case of social issues. In that case specifically, it’s more likely that a more generalized, false perception is the factor of interest. With respect to the behavior of individuals however, most might default to considering that insecurity based in false perceptions is the root.

Q: How can we most effectively address exploitation?

A?: By concerning ourselves with human needs; as opposed to human rights? By endeavoring to gain and share the most generally useful perceptions of conditions as practical? By being just as aware of the conditions as the behaviors? By the negative utility of removing the conditions that promote insecurity? Is Positive Psychology and Positive Social Psychology the answer? I think so… for what it’s worth.

Issues With Rigorous Consideration of Modern Forms of Exploitation

Noticing the nebulous language in my initial argument for naturalized socioeconomics concerning modern forms of slavery, I decided to work on a more rigorous survey. This has presented many issues concerning nomenclature, definitions, measurements and the meaningfulness of axioms. With the nomenclature, it’s sometimes debatable if the name is acceptably descriptive. Concerning definitions, it’s difficult at times to categorize specific conditions as they fall into gray areas or are suited to multiple definitions. Measurement however, is even more of an issue as scientific descriptions have to be rigorously supported with scientific evidence. This becomes a sizable issue when there is little to no evidence supporting a founding concept. The axioms themselves are unscientific in so many ways that science often lacks the tools to address them. This in many cases, leaves the ball in the hands of philosophical disciplines such as Ethics.

When trying to do the math concerning the prevalence of slavery in modern times, there were issues with nomenclature like human trafficking; and issues with definitions concerning extreme financial coercion. There are obvious gray areas concerning choice and the lack there of; however this isn’t really an issue as all forms of exploitation are ethically unacceptable. The obvious rout to solution is to address the whole of exploitation. This however has it’s difficulties as well. In order to rigorously describe and argue against exploitation, one must first demonstrate it in a scientific manner. For the purpose of scientific study, “I know it when I see it” just isn’t good enough.

The difficulties begin with clearly defining what exploitation is. Using terms and theory from Behavioral Science isn’t as helpful as one might think. For instance, defining exploitation as manipulation requires a scientific description of manipulation. This runs into issues with theory as there is no theoretical principle to manipulation. The problem is with the description of manipulation itself. It essentially requires that a person have a certain level of sentient autonomy. Where as this is the perception of most humans there is little to no evidence for it. This is a problem because perceptions are not good enough for scientific description. This is fertile soil for the Observer Effect and the like. That being said, this isn’t just a scientific issue; it’s an epistemological issue as well.

An additional issue in scientifically arguing against exploitation is rigorously arguing against exploitation as an axiom. This requires demonstrating that it is generally unfavorable. Again “I know that it is” just isn’t good enough to call science. This presents a problem concerning natural distributions of leadership qualities. Most people aren’t inclined toward leadership or have the “will” to make the big decisions. Though there is a large difference between investing in the strengths of others and a tiny minority exploiting the vast majority, the axiom itself is somewhat unscientific. This is because the condition could and probably should itself be considered natural regardless of whether or not it’s accepted by society. This of course is tempered by systems theoretical axioms as social acceptance is a part of the equation; however the level of social acceptance has not been static concerning it.

Even with ethical consideration of social exploitation, there arises an issue with where to draw the hard lines. What is or is not socially acceptable at any given time is merely generalized and not rigorously defined. There is some undeniable subjectivity to the prospect.

Maybe we shouldn’t concern ourselves with the fine, discrete details if it hinders our forward progress toward a general higher standard of living. If there are some minor details that we are incapable of ironing out, why “pet the sweaty stuff”? Because it will matter greatly to that tiny minority that we allow to fall through the cracks.

A Sci-Fi Thought Experiment

Imagine a sci-fi novel or movie that begins with an advancing society that is similar to our neo-capitalistic one. Markets are being created to solve the issues that other markets are producing. For instance, a fossil fuel market is polluting the air and water and creating a market for water purification and mitigation of atmospheric carbon.

Imagine that over time, the markets were essentially, generally focused on solving the issues that the markets had previously generated; excepting necessities like subsistence, healthcare, communications etc.. Now the accelerated advancement that has brought about the accelerated returns via more efficient tools and systems is coupled with more frequent crises; due to the dwindling spans of time between the beginning of the growth period and growth maximum and finally collapse. The frequent succession of crises becomes a significant environmental pressure and the currency systems and financial paradigms lose support and are driven into extinction with more coherent economic models.

This brings about a new era of enlightenment that promotes higher education, environmental stewardship and unprecedented unity. The only problem is that the state of the environment is in such disrepair that the unity is required for a mass revitalization project; due to existential risk factors. So now, the entire population that isn’t busy with the before mentioned necessities is working toward equilibrium and homeostasis. The state of the biosphere is so bad now that it takes about two hundred years of diligence to achieve the desired effect. During this time, this way of life is habituated as a social heuristic. So when homeostasis becomes a reality, the population is lost as to what to do then. All the living members of this society know is endeavoring to fix the environmental issues that previous generations had caused.

Now this is a bit out there; however there are enough loose correlations with our condition to make it humorous. Not so much in the form of what we might expect in the future; but with the effects of “Monetary Economics” on today’s society. We were unable to scale the environmentally cooperative economic models that we developed as hunter gatherers to something that could have been implemented in large states. Generally, we now know only what we have done for the past ten thousand years or so. We are in a rut of incoherence; but it’s not just that. Even the probable playing out of the 5/40 job market has many of us feeling lost; as jobs are entangled with one’s place in society and thus to some degree one’s identity. This is exacerbated with the natural will to contribute that evolution has endowed us with via the before mentioned factors and game theoretical behaviors etc.

It’s not clear to most that the larger mistakes that we make are likely to be cleaned up by an innocent descendant. With an issue such as climate change there really is no accountability for the ones that made the bad decisions in the first place as the span of time between the decision and the appearance of the empirical evidence that it was indeed a bad decision.

Consider ancient society. Imagine that instead of having jealously guarded trade secrets that protected the wealth of artisans and essentially created slavery, general education and work ethic were the heuristic. What then? Imagine that instead of crime and punishment, spoils were shared in the same way of their ancestors. Imagine that instead of centralizing decisions and overwhelming a well paid authority figure, a well informed public could make the task light through collective intelligence and an efficient system.

The state that we are in is likely due to a large number of poor decisions; rather than the necessity that the closed minded often tout. Unfortunately we humans like to be absolved of implication and like to think that what is is just the way that it is. We are poor at Epistemology by nature; and are quick to make excuses for it… and future generations will likely pay for that.


“We don’t inherit the land from our ancestors. We borrow it from our children.” ~ Seattle

Emerging Political Movements and the Vector Curve Preference

Most prefer to think that Socioeconomics is a political issue. This doesn’t seem to distinguish many that contend that their approach is more scientific or philosophical. The idea that Socioeconomics is a result of more intended organization as opposed to more impulsive responses that are influenced by natural dispositions and/or pre-existing social norms is much more common; especially in the more well known ideologies. It’s observed that social norms feed back into emerging ideologies as a normative influence. This is part and parcel of the growth of emerging ideologies; as the partial agreement bridges small amounts of ideological change in individuals. There is also the aspect of financial coercion to consider. Movements often require some amount of funding for the purpose of the production of propaganda. The growth of political movements is essentially measured by the number of followers that the movement gains. During the growth process, the alignment with existing ideologies has a significant, normative outcome that becomes more significant over time.


For instance, Peter Joseph on the left (ironically) is aligning somewhat to the left wing; and the solutions that he advocates are no exception. This is a function of the growth of the movement; as the movement is endeavoring to appeal to the more progressive left. It has even taken on the aspect of siding with the public sector in order to socialize administration. This is to entice working together toward the goal of administering a more coherent socioeconomic system.

Here is an interview with Peter that makes this pretty clear.


On the right of the image (just as ironic) is Stefan Molyneaux. He tends to align with the more conservative right. This of course includes siding with the private sector as he loudly and proudly… tells upon the mountain. The growth of Anarcho-Capitalism is significantly reliant upon appealing to the right; as the founding principles align with it to some degree. The feedback thus produces a clear right wing influence.

Here’s an interesting Zeitgeist production that Stefan Molyneaux was heavily involved in.


The most interesting part of this is how the social norms have created a near mirror of the current socioeconomic structure. It’s almost as though Zeitgeist has become a two party movement. The normative feedback is so pronounced that it could actually be absorbing the movement to an alarming degree.

The understanding that Socioeconomics is a process that involves predisposition and normative attractors as opposed to social enticement, may be one of the more important aspects to concentrate upon; for concerns about sustainability. Replacing more empirical expressions of the properties of nature with ideological tweaks; for the purpose of aligning to some degree with a proposed following could result in the loss of the purity of the movement. This could also destroy the effectiveness of it. Having a more coherent understanding of the manner in which social structures form and evolve is likely to produce predictive value.

This is a clear testament to the lack of effect that political movements tend to have. The entirety of our written history is full of stories similar to this. Systemic change comes when systems or sub-systems are driven into extinction. All of the issues that we are facing are factors that will likely shape the socioeconomic change that will result in the coming decades. The metrics by which we judge the appeal of the socioeconomic system are likely to change with distribution of high technology, higher learning and ecological concerns; but not likely before the effects become painfully obvious. The notion that a substantive percentage of the population would become aware and active to prevent such occurrences and align to cognitively coordinate to build a better future is a fairytale that I’m tired of hearing. It’s just not tenable. It seems that the best that we can do is to consider the issues and try to provide models that may be of use in the future; when the desperation coerces real change.

Is the devil really in the details?

Is the devil really in the details? It seems an obvious yes; even with careful consideration. Though I do wish to stress the importance of detailed consideration, I don’t think that focusing on discrete aspects of nature, in this stage of our development is the best way to approach modeling economic systems. This requires some qualification in the form of very strong arguments and I hope that I can do it justice.

With respect to observation and interpretation of data the observer is always a part of the equation. The observer is influenced by the initial environmental conditions; whether or not those initial conditions are coherent. Considering the financial state of our current economic system, one would be hard pressed to find a recent, peer reviewed publication that would suggest that it was remotely coherent. This can cause issues when making observations; as a heuristic, influence on attention can obscure important details. The same heuristic influence can cause issues in interpreting observations; as our approximations of reality are formed by the bulk of information that we have collected. This is to be expected in the absence of some form of cognitive trash collection.

Though having the ability to apply a maximally accurate approximation of reality is dependent upon the aggregation and correlation of a large number of discrete facts about nature, it’s probably not wise to try to develop coherent systems from the ground up by working out the finer details. This is probably the manner in which our current financial system was developed. At the time Coercion based political influence was likely a factor; as that was the common political ideology. This resulted in a financial system that is fundamentally coercive. Though the same could be said of the laws of nature, the behaviors that our financial system coerces do not correlate with that which nature coerces. This suggests that our financial system influences our behavior to be incoherent as well as our worldviews.

The purpose of rigorous research and experimentation is to gain a more concise, general understanding of nature. This is the goal of intention to fine detail. The importance of this understanding should not be overshadowed by the importance of even rigor. With the development of our financial system it is clear that, the outcome of the development correlated with the initial assumptions of the time. The rigidity of the system, the lack of dynamics, has been a high hurdle not only for innovation, but also for reform. This has been the case for approximately 10,000 years.

Here is a wonderful paper on system modeling that includes dynamic systems:

Note that a coherent general understanding is the basis for which the system is modeled. Though the understanding is derived from rigorous testing of assumptions concerning very discrete aspects of nature, it’s the quality of the understanding that is needed to produce a system that functions in the desired manner. This in opposition to the manner in which the financial system functions speaks volumes about the importance of a coherent approach. It’s said that, “if you begin with the wrong assumptions, you will get the wrong answers”. In modeling systems, it seems that beginning with a  maximally coherent approach maximizes the chances of being able to find solutions when working out the details. Due to the manner in which humans think and behave, top down approaches are inevitable. This suggests that facilitating this fact is just good sense.

Where it is true that the devil is in the details with respect to research and forming hypotheses and theories, it’s not necessarily the case when modeling systems. Though a bit truncated a notion, when modeling systems, the devil is in the approach with respect to it’s level of coherence.

Foundation for naturalized economic administration?

It seems pretty obvious that a naturalized administration should be decentralized. This would solve many problems with current administrative models. Centralized models are often overwhelmed into ineptitude and fall far short of important services. An efficient, decentralized administration could in principle have greater resources for providing the services needed. For instance, a large number of localized chapters could be effective in addressing local conditions, needs and services. They could also help to distribute resources from areas where they are more plentiful; provided that the chapters are well networked and organized.

I’ve been considering a few different P2P models for organizing such a network of chapters; and block chain is keeping my interest. Since a large portion of the administrations tasks would revolve around data analysis of some kind, some form of economizing platform would be required for data entry and dismissal. This has me considering a pool where initial entries can be evaluated for entry into the main database. The initial entries would of course need to be tagged with descriptors that would help to sort and expediently evaluate them. This might mean sorting by location, date entered, last date accessed, number of times accessed, candidate for dismissal, candidate for consensus, and a confidence value. This would of course require other tags for the purpose of statistical analysis upon entry into the main database; that should probably be left to the discretion of the researchers keeping and analyzing the data.

Since the data would have a confidence value, I thought maybe a block chain based sharing system could be appropriate. The confidence value would be a currency of sorts with a target confidence value making the decision as to whether the data would be entered into the main database. A minimum confidence value would of course decide if the data were to be dismissed. The tags for entry date, last date accessed and number of times accessed would be for the purpose of evaluating the data in an efficient manner. It stands to reason that, if the data posed for dismissal were to be dismissed in a maximally short time frame, the storage resources would be being used in a maximally efficient manner. If all of these tags were to be dynamic, issues might be better solved and reconsideration might be better facilitated.

Since the overarching system itself would be Proceduralistic; allowing all to participate and therefor enter data into the pool, coursewares for initial data entry would be a very good idea. Providing an access card upon completion might minimize a wide range of issues. The card might also allow access to the main database; for the purpose of finding solutions to issues; however not necessarily allowing editing. That of course would require the completion of additional coursewares. Maintenance of the database would of course be an Epistecratic subsystem; however this wouldn’t necessarily be an issue if educational resources were freely available.

The network of nodes might be composed of a large number of light clients that can be accessed directly or remotely, from personal devices surrounding a smaller number of more secure, full nodes that can be accessed directly or remotely, from the light clients. I’ve been considering Ethereum specifically because it boasts of being a platform that applications can then be developed for. Because of this it may be versatile enough to construct a more secure P2P application upon.

Our economic system has changed very little considering how long it’s been implemented. Unfortunately it’s been in place for the entirety of recorded human history. This is a large issue as we don’t have sufficient real world testing of any type of naturalized economic solutions. What we do have however is a good understanding of some of our more basic needs and wealth of scientific and engineering data. The best way to approach this issue may be to construct dynamic systems that organize such provisions and use the collective wisdom to solve the issues via self-organization. A natural model itself would be one that would self-organize. Creating a foundation for such a system seems to be the most rational approach.

Game Theory vs Self-Organization

The outcomes of Game Theoretical behavior have been demonstrated to produce effects that fall short of what is generally desired. Many would argue that this suggests that humans are naturally greedy. This however isn’t what Behavioral Science has shown.

We like to think that our life is constructed on a long line of choices; however the evidence concerning it appears to be iffy at best. For instance, consider Dr. Mate’s statement about the power addiction that could be associated with being a board member of a large corporation. The maximization of profit can be considered as a consequence of responsibility to ones stockholders. This however doesn’t mean that the choice to be in that situation isn’t relevant. Taking it even a step farther, the choice to employ a non-corporate model isn’t as likely to produce success; as the corporate model is capable of producing a more favorable price point. Corporations have been winning against small businesses for decades now; because of this. This however doesn’t suggest that the choice to run a business under these conditions is irrelevant. It also cast a shadow of doubt on the notion that it’s actually a choice; since there are so many social and economic pressures to contend with.

It’s common to try to simplify arguments to second order logic in the explanations of them. The rigor that goes into constructing the argument however goes into higher orders. For instance, considering the implications of second order logic produces third order logic an so on. This becomes a more complex task; that is easy to complicate. The social pressures that tend to complicate this process are often political and financial; and are also often based in more impulsive responses. This is where higher orders of logic — or to be more precise, lack there of — can become more of a manipulative influence; as opposed to a more cooperative one. This is not only found in business models but it is also taught in the educational system. This is of course a large problem. The Randian implications here are centered around individualism; which is being shown to be fundamentally fallacious.

What is found in normative behaviors that are associated with selection pressures is cooperation. This is probably the engine of self-organization. Being cooperative with a critical mass of subsystems appears to be what produces fit systems. Part of being self-interested is the subsystem being interested in the health of the system that supports it. Extinction and existential risk are naturally part of the equation.

The lack of third or even fourth order logic concerning the implications of our models could have severe consequences. Financial influence on political policies is obscuring the environmental awareness that is required for an individual to make informed decisions. This isn’t necessarily a danger of centralized decision making; however the initial conditions are promoting this outcome. It’s in essence, maximizing Entropy while promoting the absence of Normalization. This could be considered dangerous as it is an algorithm for extinction or existential risk. For this reason, it appears that the model is fundamentally flawed. Self-interest, by the very laws of nature cannot be both individualistic and an example of fitness in the same instance. Interest must scale to the supporting systems in order to minimize risk. This would be a much more viable model for an economic system.

The operative concept may be that predispositions to behaviors should be accounted for. This doesn’t necessarily mean that they should be manipulated; however it is easy to argue that that is clearly the case now. Rather, employing negative utility concerning that which hinders natural self-organization might bring about the most desired effect. Humans have already been endowed with the ability to be cooperative by millions upon millions of years of selection pressure. I would contend that artifacts of complication may be our most concerning issue. Working toward locating and removing these aspects of the social model, rather than trying fruitlessly to control the environment and having great expectations on human behavior might be the more rational approach.

Rather than trying to figure out how to coordinate, realizing that we are predisposed to coordinating behaviors under very naturalized circumstances might bring about an approach that would in turn produce the desired effects. Much of our attention has become distracted with artifacts that are far from coherent. Our immediate environment is generally of our own construction; and this has seemed to sever our connection to nature to varying degrees. I would contend that this is the root of the more concerning social issues. One can observe the cooperative behavior of animals and humans in more natural settings. This of course doesn’t discount the distribution of pathological behaviors found in all settings; however, it does show a positive sum spectrum with complexity. For instance infanticide, which is common in the animal kingdom is much more acceptable to male lions than male great apes. Great apes have behaviors that can prevent such occurrences; like the promiscuity of females that confuses the males ability to determine which offspring are his. Larger brained species like ourselves have the cognitive ability of weighing the value of emotional bonds against the value of an infant’s life. It may not be practical to try to extinguish all pathological behaviors; as we may not be able to have a concise understanding of all of them.

What has been interesting to me lately is systems for decentralized organization. What’s most interesting to me however, is the doubt that they are indeed decentralized; or that anything really is. The perspective that centralized models are only centralized if they are the product of an artifice seems to be a little truncated when one tries to scale them into perpetuity or infinitude. This at least for my limited understanding, keeps running into a grand centralizing structure; ie the laws of nature. I’m concerned that our awareness of our general lack of control has created a complex that has us neurotically striving for it. The dissonance between our localized perception of being in the driver seat vs the evidence that study has produced is bound to have some psychological effect. This could be the root of the issues that we have faced in building models since the dawn of civilization. This is even present in the dichotomy of free will and consequences in religion.

The disconnection from nature that civilization has produced is probably poisoning the well of our collective perception. That being the case, the most appropriate approach to allowing human nature to flourish with it’s natural predispositions may be as simple as the negative utility of removing the obstacles. It’s my contention that the obstacle is finance and it’s coercive aspects. The evidence throughout recorded history seems to point to it as a common denominator… and I’m not alone.


Entropy, Disruption and the AI


All of the variation, the diversity and everything that is interesting is rooted in entropy. The flawed nature of nature prevents emergence from becoming repetitive. There may be nothing more natural than variation. This however comes with a consequence that is just as interesting. The variation isn’t restricted to only the matter in the universe. Variation over time is the observation. This results in the bulk of emergence becoming extinct. Everything becomes extinct; either through abrupt failure or through success and transcendence. Change is always in the cards for everything.

This makes human loathing of change seem a bit counter intuitive. This is because entropy is only one module of the machine. Normalization is the process by which the successes propagate. This is extremely interesting because normalization is not by a long shot… well… the norm. Like most human endeavors, most natural experiments fail. Abrupt extinction is by far the most common occurrence. Entropy produces more variation than normalization can produce successes. Even as such, success is still subject to variation, transcendence and thus extinction over longer periods of time.

The evolution of the modern human is credited with some form of systemic entropy. The Savanna Hypothesis suggests that human evolution encountered a disruption that accelerated the variation and produced interesting and useful characteristics in our ancestors. This would be one particular instance where entropy was exacerbated and very disruptive; resulting in novelty. Of course normalization played a role; as the characteristics that Natural Selection had endowed our ancestors with influenced the manner in which the novelty was expressed.

The understanding that resulted in the crafting of artifices has proved to be extremely disruptive to the biosphere. The combination of the natural predisposition to normalize and fill a niche’, and the constant change associated with the resulting technological progress seems to have created an inner struggle in modern humans that doesn’t seem to exist in the whole of humanity; but rather is more evident in the developed world. Civilized humans are interesting and unique for many reasons that are affirming and concerning as well. The concerns of extinction risk revolve around the idea that maybe a more general instance of normalization means the abrupt extinction of civilized humans. At this very moment, the implementation of a strategy of “mutually assured destruction” has normalized the most dangerous scenario that one could imagine. This doesn’t just entail the extinction of civilized humans; but also the bulk of life on the biosphere. We have put all of life as we know it at risk as well. We have even narrowly escaped this scenario on one occasion. We forget this; in the illusion of the safety of our brick homes, in the fog of political ideology and deodorant ads. Cognitively, we attend to our immediate surroundings; which is an artifice that divides us from the natural world that bore us. Our perception of reality has thus become an artifice. We have forgotten who we are; and our place in the universe. We have created silly notions like property, justice and inalienable rights; while teetering on the destruction of an entire global ecology that appears to be rare in all that we can survey. This is an inconvenient fact for the optimist.

The cause of these issues is clearly the production of entropy in the absence of normalization. I would like to suggest that the absence of normalization is rooted in the disconnection from nature that our modern conveniences and memes have caused by hijacking our attention. Science has the potential to mitigate some of these effects by directing attention to nature; however natural distributions may not allow for this to become the norm. If attention to science is proportional to scientific endeavors in the immediate surroundings, it would seem that we are currently playing a negative sum game. Opportunities for people to be in nature and thus connect directly can also be a viable influence, however in a world where working in a building and going home to a building with a television and a beverage both marketed as a “reward” leaves much to be desired as well. I can’t help but see this as more exacerbated entropy that would only enable similar types of dangers to that which we have created in the past.

My contention is that this is most likely to end with the extinction of specifically the technologically progressing human, by a combination of the normalization associated with niche’ existence and by the entropy and resulting novelty that is associated with transcendence. I find it difficult to reason out a dichotomy of human and machine when the competitive advantages of merger is so great. I also find it hard to reason out a place for an evolved species in a high tech environment, for the reasons that I have previously expressed. I also find it difficult to buy the notion of humans becoming pets for the AI as the AI is not likely to be tied to the biosphere as legacy humans are and the opportunity to explore and advance might be more appealing than carrying the dead weight of a bunch of freeloaders. This of course requires some qualification. When humans began domesticating dogs, they had a practical purpose. The superior senses of the dog helped people in hunting and protecting the group. It was symbiosis. What practical purpose can a human provide for super intelligence?

Work as we know it is only about 100 years old. Before there was essentially only business and subsistence. I would suggest that is likely to make a comeback. This of course requires some qualification as well. There has been an ongoing trend to refine production methods with technology and pass the technology to the general public. This is happening with technologies like 3D printers, for instance. This movement toward automation would only simplify this process. A combination of availability and necessity seems evident in the coming decades as the technologies are in the works and the crises are as well. There has also been a long running trend of decentralization since the time of Adam Smith, the birth of the New World and the enlightenment. There doesn’t seem to be a defeater to this trend. It seems that the end of the era of the 5 / 40 job may just return us to a state of relative self sufficiency like we previously had lived under. I’m speaking of legacy humans of course; though I can’t imagine the remaining humans numbering as much as a billion.

The notion that the AI would take the proverbial crown from humans is based on the fallacy that we wear it now. If there is anything that we are not, it is in control. We are on the verge of “causing” our own extinction every day, with every “decision”. We are not the drivers. We are driven. We are the product of and a vehicle for natural law… and the AI will be too.